Journal of Organometallic Chemistry, 192 (1980) 305-317
© Elsevier Sequoia S.A., Lausanne - Printed in The Netherlands

VIBRATIONAL SPECTRA AND NORMAL COORDINATE ANALYSIS OF CF_{3} COMPOUNDS

XXXIV *. THE BIS(TRIFLUOROMETHYL)DIFLUOROBORATE ANION: X-RAY STRUCTURE OF Cs[(CF $\left.\mathbf{3}_{2} \mathrm{BF}_{2}\right]$

D.J. BRAUER, H. BÜRGER and G. PAWELKE

Anorganische Chemie, Fachbereich 9, Gesamthochschule, D-5600, Wuppertal (W. Germany) (Received December 10th, 1979)

Summary

The ${ }^{10} \mathrm{~B}$ and ${ }^{11} \mathrm{BIR}$ and Raman spectra of the $\left[\left(\mathrm{CF}_{3}\right)_{2} \mathrm{BF}_{2}\right]^{-}$anion are reported, assigned, and used to determine a quadratic local symmetry force field via a normal coordinate analysis. The crystal structure of $\operatorname{Cs}\left[\left(\mathrm{CF}_{3}\right)_{2} \mathbf{B F}_{2}\right]$ ($P 2_{1} / m, a 5.958(1), b 7.628(1), c 8.2997(9) \AA, \beta 100.50(1)^{\circ}, Z=2, d_{c} 2.863 \mathrm{~g}$ cm^{-3}) has been determined by X-ray diffractometry. The most important force constants are $f(\mathrm{BC}) 3.68 \times 10^{2}, f(\mathrm{BF}) 4.17 \times 10^{2}$ and $f(\mathrm{CF}) 4.85 \times 10^{2} \mathrm{~N} / \mathrm{m}$, the respective mean bond lengths being $1.618,1.391$ and $1.353 \AA$. The $F-B-F$ and $\mathrm{C}-\mathrm{B}-\mathrm{C}$ bond angles are 108.1(4) and 113.6(5) , respectively. Apparently because of Cs $\cdots F(B, C)$ interactions, one $B-C$ bond has a staggered and the other an eclipsed conformation in the solid state.

Introduction

We recently reported [2] the first synthesis of salts containing the $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{BF}_{2}$ anion, the first compounds in which more than one CF_{3} group is bonded to a \mathbf{B} atom. Indeed, B is the only element, E, of main Groups I, II and III known to form $\mathrm{CF}_{3}-\mathrm{E}$ linkages.

Among other features, our interest in $\mathrm{CF}_{3} \mathrm{~B}$ compounds centers on the nature of the $C-B$ bond. Possessing an electronegativity below 2.5, B would be expected to bind less tightly to a $\mathbf{C F}_{3}$ group than to a $\mathbf{C H}_{3}$ group in the light of a comparison of $\mathrm{CF}_{3}-\mathrm{E}$ and $\mathrm{CH}_{3}-\mathrm{E}$ bond lengths with the electronegativity of E [3]. This behavior was not confirmed by our structural and spectroscopic investigation of $K\left[\mathrm{CF}_{3} \mathrm{BF}_{3}\right]$, but comparative data were scant [4]. The latter

[^0]study [4] revealed a clear analogy between the vibrational spectra of $\mathrm{CF}_{3} \mathrm{BF}_{3}{ }^{-}$ and $\mathrm{CF}_{3} \mathrm{CF}_{3}$. We now report a vibrational spectroscopic investigation of $\left(\mathrm{CF}_{3}\right)_{2}-$ $\mathrm{BF}_{2}{ }^{-}$, compare the spectrum with that of the isoelectronic $\mathrm{CF}_{3} \mathrm{CF}_{2} \mathrm{CF}_{3}$ [5], and describe the structure of $\mathrm{Cs}\left[\left(\mathrm{CF}_{3}\right)_{2} \mathrm{BF}_{2}\right]$ as determined by X-ray diffraction.

X-ray structure analysis of $\mathrm{Cs}\left[\left(\mathrm{CF}_{3}\right)_{2} \mathrm{BF}_{2}\right]$

X-ray data collection

The needle-shaped crystals used in the X-ray study were glued to glass fibers. Precession and Weissenberg photographs indicated that the crystals belong to the monoclinic system, space groups $P 2_{1}$ or $P 2_{1} / m$. Precise lattice constants were determined by a least-squares method from 50θ values measured with a CAD-4 diffractometer, which was also used for the intensity measurements. During data collection, the variations of three periodically-monitored standards were less than $\pm 3 \%$ of their mean intensities. After an absorption correction, the intensities were converted into $\left|F_{0}\right|$'s. Crystal data and details of data collection and reduction are given in Table 1.

Solution and refinement

Coordinates for the Cs atom were derived from a Patterson map. A difference Fourier synthesis calculated assuming space group $P 2_{1}$ revealed that the remaining atoms were arranged as required by space group $P 2_{1} / m$. Thus the latter symmetry was used in all further calculations. The structure was refined by least-squares techniques, the function $\Sigma \omega \Delta^{2}, \Delta=\left\|F_{0}|-| F_{\mathrm{c}}\right\|$, being mini-

TABLE 1
CRYSTAL DATA FOR Cs[(CF $\left.\left.)_{3}\right)_{2} \mathrm{BF}_{2}\right]$

crystal system	monoclinic
a	$5.958(1)$ A
b	
c	8.2997 (9) A
β	100.50(1) ${ }^{\circ}$
z	2
$\boldsymbol{d}_{\boldsymbol{c}}$	$2.863 \mathrm{~g} / \mathrm{cm}^{3}$
t	$20^{\circ} \mathrm{C}$
Systematic absences	OkO $k=2 n+1$
space gronp	$\mathrm{P} 2_{1} / \mathrm{m}$
Quadrant measured	hkl, $\overline{\mathrm{h}}$ kl
$\dot{\lambda}$	0.7107 A (Mo-K ${ }_{\alpha}$)
Monochromator	graphite
Maximum θ	30°
Scan technique	$\omega-20$
Scan width (ω)	$1.2^{\circ}+0.34^{\circ} \tan \theta$
Scan speed (20)	$0.45-5.00^{\circ} / \mathrm{min}$
Reflectioas measured	1219
Unique rellections	1099
Observed ($\left\|F_{0}\right\| \geqslant 6 \pi\left(\left\|F_{0}\right\|\right)$)	999
Weights \boldsymbol{w} observed unobserved	$\begin{aligned} & {\left[\sigma^{2}\left(\left\|F_{0}\right\|\right)+0.0009\left\|F_{0}\right\|^{2}\right]^{-1}} \\ & 0 \end{aligned}$
Crystal size	$0.06 \times 0.10 \times 0.58 \mathrm{~mm}$
$\mu\left(\mathrm{Mo}-\mathrm{K}_{\alpha}\right.$)	$51 \mathrm{~cm}^{-1}$
Transmission factors	0.590-0.738

mized. Dispersion-corrected [6a] relativistic Hartree Fock scattering factors [6b] were used for all atoms. Anisotropic refinement including an extinction correction converged $*$ with $R=\Sigma \Delta / \Sigma\left|F_{0}\right|=0.028$ and $R w=\left[\Sigma w \Delta^{2} /\right.$ $\left.\Sigma \omega\left|F_{0}\right|^{2}\right]^{1 / 2}=0.042$ for the 999 observed reflections.

On the final cycle no parameter (Table 2) shifted more than 0.04σ. The peaks (1.0 to $-0.6 e / \AA^{3}$) on the final difference map confirmed the structure, only one feature ($0.6 \mathrm{e} / \AA^{3}$) greater than $0.4 \mathrm{e} / \AA^{3}$ not being near the Cs atoms. Plots of $\left(w \Delta^{2}\right)^{1 / 2}$ versus $\left|F_{0}\right|, \sin \theta / \lambda$ and various groupings of the Miller indices verified the relative validity of the weighting scheme. The numbering scheme is specified in Fig. 1. Selented distances and angles are listed in Table 3. The computer programs have been described previously [4].

Description of the structure

The successful refinement to relatively low discrepancy indices affords further justification for our choice of space group, $P 2_{1} / m$. Therefore with $Z=2$, each ion must possess either crystallographic m or $\overline{1}$ symmetry; in fact, the former symmetry was found for both ions, the anion atoms $B, C(1), C(2), F(1)$ and $F(3)$ occupying the mirror plane. Because the conformation of $B-C(1)$ is staggered while that of $B-C(2)$ is eclipsed, the symmetry of the anion, which might otherwise have been as high as $m m 2\left(C_{2 v}\right)$, is no higher than m (C_{s}), in the solid state. Possible structural effects of the difference in conformation will be delineated later.

Bond lengths and angles in various borate structures are tabulated in Table 7. The similarity of the average values for $\operatorname{Cs}\left[\left(\mathrm{CF}_{3}\right)_{2} \mathrm{BF}_{2}\right.$] and $\mathrm{K}\left[\mathrm{CF}_{3} \mathrm{BF}_{3}\right.$] [4] is striking. Except for the $1.8(6)^{\circ}$ smaller $F-B-F$ angle in the Cs salt, none of the variations are statistically significant. Furthermore, substituting one or two F atoms of $\mathrm{BF}_{4}{ }^{-}$by CF_{3} groups has no apparent influence on the remaining B-F bond lengths. The B-C distances in Table 7 are relatively constant $* *$ and are similar to the $1.620(5) \AA$ value found in three diethylbis(1-pyrazolyl)borato $\left(\mathrm{Et}_{2} \mathrm{Bpz}_{2}\right)$ complexes [8]. The $\mathrm{C}(1)-\bar{B}-\mathrm{C}(2)$ angle, $113.6(5)^{\circ}$, compares well with those reported in the $\mathrm{Et}_{2} \mathrm{Bpz}_{2}$ complexes (114.0(4) ${ }^{\circ}$) [8] and in $\mathrm{CF}_{3} \mathrm{CFI}-$ $\mathrm{CF}_{3}\left(113.2(12)^{\circ}\right)$ [9].

The most surprising structural feature is the different conformation of the two $B-C$ bonds. Steric repulsions along $B-C(2)$ must be greater than those along $B-C(1)$, and the anion displays several distortions which can be related to this difference. First, the $B-C(2)$ bond length is significantly longer, 0.029 (12) A, than the B-C(1) bond. Second, Fig. 2 shows that the plane through $F(3), F(4), F(4)^{1}$ is $0.051(8)$ and $0.026(11) \AA$ further removed from the B and bonded C atom, respectively, than the $F(1), F(2), F(2)^{I}$ plane is $* * *$. Third, as measured by the mean $F \cdots F$ distances in the same C_{3} group, the F

[^1]TABLE 2
POSITIONAL ${ }^{a}$ AND THERMAL ${ }^{b}$ PARAMETERS ${ }^{c}$ FOR $\mathrm{CS}_{[}\left[\left(\mathrm{CF}_{3}\right)_{2} \mathrm{BF}_{2}\right]$

Atom	x	y	z	$U(1,1){ }^{\text {d }}$	$U(2,2)$	$U(3,3)$	$U(1,2)$	$U(1,3)$	$U(2,3)$
Cs	1087(6)	25000	22237(4)	589(2)	434(2)	446(2)	0	96(1)	0
B	6832(10)	2500	7928(7)	43(2)	$56(3)$	99(2)	0	6(2)	0
C(1)	4312(13)	2500	8350(12)	$52(3)$	87(5)	88(5)	0	28(3)	0
c(2)	6867(11)	2500	B960(7)	60(3)	60(3)	453)	0	9(2)	0
F(1)	4277(12)	2500	9962(8)	116(5)	137(6)	102(4)	0	$74(4)$	0
$\mathrm{F}(2)$	3040(8)	3913(7)	7722(7)	102(3)	157(4)	169(4)	80(9)	44(3)	31(4)
F(3)	4923(11)	2500	4913(7)	85(3)	105(0)	69(2)	0	-15(2)	0
$\mathrm{F}(4)$	8058(8)	3886(5)	5511(4)	157(4)	89(2)	68(2)	-43(2)	37(2)	6(2)
F(5)	7945(5)	3978(4)	8680(9)	85(2)	$74(2)$	62(2)	-32(2)	17(1)	$-14(1)$

${ }^{a}$ For $\mathrm{CB}_{\mathrm{B}} \times 10^{5}$, otherwise $\times 10^{4} .{ }^{b}$ For $\mathrm{Cs}_{\mathrm{s}} \times 10^{4}$, otherwise $\times 10^{3}{ }^{c}{ }^{c}$ Equation of extinction correction is $\left|F_{\mathrm{c}}\right|^{*}=\left|F_{\mathrm{c}}\right|\left(1-x \mid F_{\mathrm{c}}{ }^{2} / \mathrm{sin} 0\right)$ where $x=4(1) \times 10^{-7}$. ${ }^{d}$ Form of anisotrople thermal clilipsold is $\exp \left[-2 \pi^{2}\left(h^{2} a^{\star 2} U(1,1)+\ldots+2 h l b^{\star} c^{\star} U(2,3)\right)\right]$.

atoms of $\mathbf{C}(2)(2.122(4) \AA)$ are forced closer together than are those of $C(1)$ ($2.158(5) \AA$). For comparison, the mean value in $K\left[\mathrm{CF}_{3} B F_{3}\right]$ is $2.129(5) \AA$. Indications of angular distortions were obtained by examining the acute angles (Fig. 2) formed by the B-C vectors and by the normals to the $F(1), F(2), F(2)^{I}$ and $F(3), F(4), F(4)^{I}$ planes, P_{1} and P_{2}, respectively, with the normal to the B, $F(5), F(5)^{1}$ plane P_{3}. The following observations can be made. First, while P_{1} is essentially colinear with $\mathrm{B}-\mathrm{C}(1), \mathrm{P}_{2}$ deviates by 4.1° from colinearity with $B-C(2){ }^{\dagger}$. Second, since $x\left(P_{2}, P_{3}\right)$ is 2.0° larger than $X\left(P_{1}, P_{3}\right)$, the F substituent plane of $\mathbf{C}(2)$ tilts slightly further away from the borate F atoms than does that of $C(1)$. Third, $B-C(2)$ is inclined 6.2° more steeply to P_{3} than is $B-C(1)$. The second and third points are consistent with the relatively short $C(2)-F(3)$ bond length, $1.318(8) \&$, and the large $B-C(2)-F(3)$ bond angle, 119.5(6) ${ }^{\circ}$. Despite these distortions, the $F(4) \cdots F(5)$ contact, $2.632(4) \AA$, is considerably less than the fluorine van der Waals diameter, $2.94 \AA$ [10], as well as the $F(1) \cdots F(5)$ distance, $2.839(7) \AA$, and nearly equal to the shortest $F \cdots F$ distance between different CF_{3} groups in the overcrowded $\mathrm{N}\left(\mathrm{CF}_{3}\right)_{3}, 2.60(4) \AA$ [11].

Interestingly, since the contacts $C(1) \cdots C(2)(2.71(1) \AA), F(3) \cdots C(1)$ (2.94(1) \AA) and $F(2) \cdots(3)(2.967(8) \AA)$ are not unusually short, nonbonded repulsions between CF_{3} groups are certainly not severe. To evaluate the nonbonded repulsions in a structure with both CF_{3} groups staggered relative to the BF_{2} fragment, distances were calculated after rotating the F atoms bonded to $\mathrm{C}(2)$ by 180° around the $\mathrm{B}-\mathrm{C}(2)$ bond. Because of the above-mentioned

[^2]TABLE 3
SELECTED DISTANCES (\AA) AND ANGLES (${ }^{\circ}$) IN Cs[(CF3) $\left.\mathbf{2 B F}_{2}\right]$

B-C(1)	1.603(9)	Cs-F(1) ${ }^{\text {II }} \mathrm{b}$	3.330(7)
B-C(2)	1.632(8)	Cs-F(2) ${ }^{\text {III }}$	$3.354(5){ }^{\text {a }}$
B-F(5)	$1.391(4)^{a}$	Cs-F(3)	3.258(6)
C(1)-F(1)	1.342(11)	Cs-F(4) ${ }^{\text {IV }}$	$3.385(4)^{6}$
$C(1)-F(2)$	$1.365(6){ }^{\text {a }}$	Cs-F(4)V	$3.391(4)^{\text {a }}$
C(2)-F(3)	$1.318(8)$	$\mathrm{Cs}-\mathrm{F}(5){ }^{\text {V }}$	$3.048(3){ }^{a}$
C(2)-F(4)	$1.365(5){ }^{a}$	Cs-F(5)VI	$3.216(3){ }^{\text {a }}$
C(1)-B-C(2)	113.6(5)	$F(1)-C(1)-F(2)$	$105.8(5){ }^{\text {c }}$
$C(1)-B-F(5)$	107.1(4) ${ }^{\text {a }}$	$\mathrm{F}(2)-\mathrm{C}(1)-\mathrm{F}(2)^{\text {I }}$	104.3(8)
$\mathrm{C}(2)-\mathrm{B}-\mathrm{F}(5)$	110.3(3) ${ }^{a}$	$\mathrm{B}-\mathrm{C}(2)-\mathrm{F}(3)$	119.5(6)
$\mathrm{F}(5)-\mathrm{B}-\mathrm{F}(5)^{\text {I }}$	108.1(4)	$\mathrm{B}-\mathrm{C}(2)-\mathrm{F}(4)$	112.2(3) ${ }^{\text {a }}$
$\mathrm{B}-\mathrm{C}(1)-\mathrm{F}(1)$	113.8(7)	$F(3)-C(2)-F(4)$	$101.6(6){ }^{a}$
$\mathrm{B}-\mathrm{C}(1)-\mathrm{F}(2)$	$113.2(5){ }^{\text {a }}$	$F(4)-C(2)-F(4){ }^{\text {I }}$	104.8(4)

${ }^{a}$ Two such mirror-related values. ${ }^{b}$ Coordinates r of primed atoms are related to those of the asymmetric unit as follows: $r^{I}=x, 0.5-y, z ; r^{\mathrm{II}}=x, y, 1-z ; r^{\mathrm{III}}=-x, y-0.5,1-z ; r^{\mathrm{IV}}=x-1, y, z ; r^{\mathrm{V}}=1-x$, $y-0.5,1-z ; r^{\mathrm{VI}}=x-1, y, z-1$.
angular distortions, this model will place the F atoms of $C(2)$ somewhat too far from $F(5)$ and somewhat too near $C(2)$ and $F(2)$ than expected for an anion with exact $m m 2$ symmetry. Since the model yields $F(5) \cdots F(C(2))$ distances all greater than $2.96 \AA$ while shortest $F(2) \cdots F(C(2))$ and $C(1) \cdots F(C(2))$ contacts are 2.86 and $3.08 \AA$ respectively, nonbonded repulsion would appear to favor a staggered conformation over that found in the crystal. However, such a model is incompatible with the observed anion packing because of an impossibly short $\mathrm{F}(\mathrm{C}(2)) \cdots \mathrm{F}(\mathrm{C}(2))$ contact ($1.89 \AA$) over the inversion centre at $1 / 2,0,1 / 2$. In the real structure, the shortest contact between anions is $F(4) \cdots F(4)(2-x$, $1-y, 1-z), 3.111(8) \AA$.

Fig. 2. Projection down b of $B-C(1)$ and $B-C(2)$ vectors and of plane normals P_{1}, P_{2} and P_{3}.

These observations imply that the anion conformation is dictated by the requirements of best possible anion packing about the cations. The Cs cations make twelve contacts (Table 3) shorter than $3.68 \AA$ with F atoms in eight dirferent anions. Of these, the shortest four ($2 \times 3.048(3) \AA, 2 \times 3.216(3) \AA)$ are with boron-bonded F atoms, which may be compared with eight such distances (3.11(1)-3.211(8) \AA) reported for CsBF_{4} [12]. That five of the remaining eights $C s \cdots F$ contacts are with substituents of $C(2)$ further indicates that $C s \cdots F$ interactions favor the observed anion conformation.

Vibrational spectra

General. In the discussion of the $\mathrm{CF}_{3} \mathrm{BF}_{3}{ }^{-}$anion [4], the relationship between the isoelectronic species $\mathrm{CF}_{3} \mathrm{BF}_{3}{ }^{-}$and $\mathrm{CF}_{3} \mathrm{CF}_{3}$ proved to be very useful for the interpretation of the vibrational spectra, and analogous behavior might be expected for the isoelectronic species $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{BF}_{2}^{-}$and $\mathrm{CF}_{3} \mathrm{CF}_{2} \mathrm{CF}_{3}$ which were studied recently [5]. Since the structure determination of Cs[$\left(\mathrm{CF}_{3}\right)_{2} \mathrm{BF}_{2}$] established that the anion conformation in the solid state is probably influenced by the cation, ideal $C_{2 v}$ symmetry appears to be justified for the solution spectra and for the normal coordinate analysis (NCA). The notation of the normal vibrations of $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{BF}_{2}-\Gamma \mathrm{vib}=9 a_{1}+5 a_{2}+7 b_{1}+6 b_{2}$ is that of Table 1 in Ref. 5. The notation is also indicated in Table 4 of this paper. The vibrational spectra of $\left(\mathrm{CF}_{3}\right)_{2}{ }^{11} \mathrm{BF}_{2}{ }^{-}$(natural abundance $\left.80.4 \%{ }^{11} \mathrm{~B}\right)$ and of $\left(\mathrm{CF}_{3}\right)_{2^{-}}$ ${ }^{11} \mathrm{BF}_{2}{ }^{-}\left(92.4 \%{ }^{10} \mathrm{~B}\right.$; Oak Ridge National Laboratory) are reproduced in Table 5. Fig. 3 shows the Raman spectra of aqueous $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{BF}_{2}{ }^{-}$and of $\mathrm{C}_{3} \mathrm{~F}_{8}$. Fig. 4 shows the IR spectrum. From Fig. 3 it is evident that not only the intensity

TABLE 4
VIBRATIONAL SPECTRA $\left(\mathrm{cm}^{-1}\right)$ OF THE $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{BF}_{2}-\mathrm{ANION}$

TABLE 5
NON-ZERO SYMMETRY FORCE CONSTANTS $F_{i j}\left(10^{2} \mathrm{~N} / \mathrm{m}\right)$ FOR THE (CF $\left.)_{2}\right)_{2} \mathrm{BF}_{2}-$ ANION, SCALED TO 1 A

	$F_{i j}, i j=$	$F_{i j}, \mathbf{i j}=$		
$\nu_{s}\left(\mathrm{CF}_{3}\right)$	$11=1515$	6.65	$12=1516$	0.60
$\delta_{3}\left(\mathrm{CF}_{3}\right)$	$22=1616$	1.80	$16=1520$	0.25
$\nu_{\text {as }}\left(\mathrm{CF}_{3}\right)$	$33=1010=1717=2222$	3.95	$26=1620$	-0.25
$\delta_{\text {as }}\left(\mathrm{CF}_{3}\right)$	$44=1111=1818=2323$	1.80	$34=1011=1718=2223$	-0.75
$\rho\left(\mathrm{CF}_{3}\right)$	55	6.90	$35=1012=1719=2224$	0.40
$\nu_{s}\left(\mathrm{BC}_{2}\right)$	66	3.96	38	0.08
$\nu_{s}\left(\mathrm{BF}_{2}\right)$	77	5.56	$45=1112=1819=2324$	-0.25
$\delta_{s}\left(\mathrm{BC}_{2}\right)$	88	1.18	48	-0.08
$\delta_{s}\left(\mathrm{BF}_{2}\right)$	99	1.20	57	-0.20
δ (FCB)	1212	0.99	67	0.20
δ (FBC)	1313	0.80	68	0.10
$\rho\left(\mathrm{CF}_{3}\right)$	1919	1.17	69	-0.30
$\nu_{\text {as }}\left(\mathrm{BC}_{2}\right)$	2020	3.40	78	-0.60
δ (FBC)	2121	0.60	79	0.60
δ (FCB)	2424	1.35	89	0.25
$\nu_{\text {as }}\left(\mathrm{BF}_{2}\right)$	2525	2.78	1213	0.05
δ (FBC)	2626	0.66	1920	0.10
			1921	0.18
			2021	0.24
			2425	-0.23
			2426	-0.04
			2526	0.53

pattern but also the absolute and relative positions of the Raman lines are surprisingly consistent for both species, though there is a general shift to lower frequencies in the anion.
a_{1} Vibrations. Six of the nine a_{1} vibrations are immediately recognized from

Fig. 3. Faman spectra of $\operatorname{Cs}\left[\left(\mathrm{CF}_{3}\right)_{2} \mathrm{BF}_{2}\right]$, ~ 50 石 aqueous solution, and of liquid $\mathrm{C}_{3} \mathrm{~F}_{\mathbf{8}}$.

Fig. 4. Infrared spectra of $\mathrm{Cs}\left[\left(\mathrm{CF}_{3}\right)_{2} \mathrm{BF}_{\mathbf{2}}\right]$; a, polyethylene disc, natural $\mathrm{B} ; \mathrm{b}, \mathrm{c}, \mathrm{KBr}$ disc, natural B ; d , KBr disc, ${ }^{10} \mathrm{~B}, \mathrm{CF}_{3} \mathrm{BF}_{3}{ }^{-}$impurities are marked with asterisks.
their polarized Raman lines at $286,334,515,725$ and $1319 \mathrm{~cm}^{-1}$. Their counterparts in $\mathrm{C}_{3} \mathrm{~F}_{8}$ are observed at $318,389,547,665,781$ and $1369 \mathrm{~cm}^{-1}$. The three a_{1} vibrations still missing correspond to the $\mathrm{C}_{3} \mathrm{~F}_{8}$ vibrations at 151, 1151 and $1262 \mathrm{~cm}^{-1}$. Assuming a decrease of the $\mathrm{C}_{3} \mathrm{~F}_{8}$ frequencies in $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{BF}_{2}{ }^{-}$, and taking into account the results of the NCA and the expected ${ }^{10} /{ }^{11} \mathrm{~B}$ shifts, the IR absorptions observed at $122 \mathrm{~cm}^{-1}$ for the CBC bending and at 1038/ 1011 and $\sim 1100 / \sim 1090 \mathrm{~cm}^{-1}\left({ }^{10} /{ }^{11} \mathrm{~B}\right)$ for the BF and CF stretch, respectively, are most likely to be associated with the missing a_{1} vibrations. The mixing of the two latter vibrations, as indicated by the ${ }^{10} /{ }^{11} \mathrm{~B}$ shift, should be noted.
b_{1} Vibrations. The seven b_{1} vibrations which are symmetrical to the CBC plane should be associated with IR absorptions. In $\mathrm{C}_{3} \mathrm{~F}_{8}$ these are observed at $276,337,537,731,1008,1210$ and $1350 \mathrm{~cm}^{-1}$. These correspond to IR absorptions of $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{BF}_{2}{ }^{-}$at 234, 310, 553, 691/689, 907/880, 1055 and $1334 / 1320 \mathrm{~cm}^{-1}$. This assignment is supported by the NCA results. From these
it is concluded that the CBC stretch (ν_{20}) associated with the absorption at $907 / 880 \mathrm{~cm}^{-1}$ accidentally coincides with the BF stretch ν_{25}, which again exhibits the same ${ }^{10} /{ }^{11} \mathrm{~B}$ shift.
b_{2} Vibrations. The nontorsional b_{2} fundamentals of $\mathrm{C}_{3} \mathrm{~F}_{8}$ are located at 219, $461,618,1155$ and $1268 \mathrm{~cm}^{-1}$. Taking into account the accidental coincidence of ν_{20} and ν_{25} and the expectation that the b_{2} vibrations are active both in the IR and Raman effect, the vibrations observed at 180, 430, 564, 907/880 and $1100 \mathrm{~cm}^{-1}$ are assigned to b_{2}.
a_{2} Vibrations. As in $\mathrm{C}_{3} \mathrm{~F}_{8}$, the a_{2} vibrations, which are only Raman active, are barely observable. Either their intensities are very low or they coincide with fundamentals of other symmetry species, a shoulder on the Raman line at 305 cm^{-1} being the only experimental evidence for an a_{2} vibration. From the NCA the nontorsional frequencies are calculated to be $236,305,558$ and $1050 \mathrm{~cm}^{-1}$, which compares well with the a_{2} fundamentals of $C_{3} F_{8}$ for which $276,347,537$ and $1369 \mathrm{~cm}^{-1}$ were calculated [5].

There is no experimental evidence for the torsions ν_{14} and ν_{27} for which a frequency of $\sim 50 \mathrm{~cm}^{-1}$ is most likely. From intensity considerations the strong IR absorption at $70 \mathrm{~cm}^{-1}$ is assigned to a lattice mode.

TABLE 6
OBSERVED AND CALCULATED VIBRATIONAL FREQUENCIES, ${ }^{10 / 11}$ B SHIFTS (cm ${ }^{-1}$) AND POTENTIAI, ENERGY DISTRIBUTION $V(k)^{\boldsymbol{a}}$ FOR THE (CF $\left.{ }_{3}\right)_{2}{ }^{11} \boldsymbol{B F}_{2}$ ANION

	$\nu_{o b s}{ }^{11} \mathrm{~B}$	$\Delta \nu_{\text {obs }}\left({ }^{10} \mathrm{~B}-{ }^{11} \mathrm{~B}\right)$	$\nu_{\text {calc }}{ }^{11} \mathrm{~B}$	$\Delta \nu_{\text {calc }}$ $\left({ }^{10} \mathrm{~B}-{ }^{11} \mathrm{~B}\right)$	$V(k){ }^{a}\left({ }^{11} \mathrm{~B}\right)$
a_{1}	1319		1311	8	44(2), 43(6), 38(1)
	725		725		52(1), 26(2)
	~ 1090		1084	6	74(3), 24(4), 17(5), 16(8)
	595		600	2	21(3), 14(4), 10(7), 10(9)
	515		520	1	47(4), 25(9), 13(6)
	1011	27	1014	23	83(7), 13(9)
	334		329		64(9), 11(5)
	286		286		44(5), 27(6), 14(4), 12(2)
	122		122		77(8), 24(5)
a_{2}			1050		$91(10), 27(11), 13(12)$
			558		$60(11), 16(10)$
		305	305		$71(12), 25(11), 19(13)$
			236		$75(13), 22(12)$
b_{1}	1320	14	1319	12	52(20), 40(16), 35(15)
	689	2	693	3	49(16), 30(15)
	1050		1047	1	86(17), 25(18), 18(19)
	553		551		65(18), 13(17)
	880	27	880	26	37(15), 37(20), 18(21)
	311		311		86(19), 18(18)
	234		234	1	77(21)
b_{2}	~1100	$\sim 20{ }^{\text {b }}$	1110	7	69(22), 30(24), 22(23), 11(26)
	564		560		47(23), 19(22). 10(25)
	880	27	880	28	88(25). 17 (22). 14(26). 12(24)
	180		179		86(26), 26(24)
	430		428	1	39(23), 36(24). 13(25)

${ }^{a} V(k)=F_{d i a} L_{i k}{ }^{2} 100 / \Sigma_{i j} F_{i j} L_{i k} L_{j k}$ for $V(k) \geqslant 10 .{ }^{b}$ Uncertain.

Normal coordinate analysis

In order to gain support for the assignment mainly based on comparison with $C_{3} F_{8}$, a NCA was undertaken to obtain force constants for the interpretation of the bonding in the $\left(\mathrm{CF}_{3}\right)_{2} \mathrm{BF}_{2}{ }^{-}$anion, particularly in comparison with $\mathrm{CF}_{3} \mathrm{BF}_{3}{ }^{-}$, and to describe the vibrational behavior properly. Following the FG matrix method a G matrix was calculated [13] assuming $C_{2 v}$ symmetry with staggered orientation of the CF_{3} groups and averaged bond lengths and bond angles taken from the X-ray data. A starting F matrix following the principle of the quadratic local symmetry force field [14] was adopted transferring force constants from the $\mathrm{CF}_{3} \mathrm{BF}_{3}{ }^{-}$anion [4]. This force field reproduced both experimental frequencies and ${ }^{10} /{ }^{11} \mathrm{~B}$ shifts very satisfactorily. It was refined according to the following criteria:
(i) exact fit with fundamental frequencies obtained from solution spectra whenever possible,
(ii) precise reproduction of experimental ${ }^{10} /{ }^{11} \mathrm{~B}$ shifts,
(iii) reduction of the F matrix multiplicity according to the principle of meaningful potential energy distribution [15]. $\mathrm{F}_{i j}$'s corresponding to identical $\mathrm{G}_{i j}$'s were given the same value, and $\mathrm{F}_{i j}$'s corresponding to $\mathrm{G}_{i j}=0$ were taken as zero. In classes a_{2} and b_{2} the torsions were not considered.

The final non-zero symmetry force constants are given by Table 5. Experimental and calculated vibrational frequencies for the ${ }^{10} \mathrm{~B}$ and ${ }^{11} \mathrm{~B}$ species as well as the calculated potential energy distribution in terms of diagonal force constants (not eigenvectors) are collected in Table 6. Calculated frequencies and ${ }^{10} /{ }^{11} \mathrm{~B}$ shifts are in acceptable agreement with observation.

Discussion

That the force constants for $\operatorname{Cs}\left[\left(\mathrm{CF}_{3}\right)_{2} \mathrm{BF}_{2}\right]$ are normal is shown by the comparisons given in Table 7. A qualitative correlation at least between the force constants and bond lengths may be discerned if one assigns an uncertainty to the force constants of about $0.2\left[10^{2} \mathrm{~N} / \mathrm{m}\right]$.

In contrast to $f(B F), f(B C)$ appears to be less sensitive to the coordination number of the B atom; similarly, the change from borane to borate influences $r(B F)$ more than $r(B C)$. The substitution effect of the CF_{3} group on $\mathrm{B}-\mathrm{C}$ and B-F bond lengths appears to be relatively small. Thus investigations of further $\mathrm{CF}_{3}-\mathrm{B}$ compounds will be necessary before a weakening or strengthening of the $\mathrm{B}-\mathrm{C}$ bond in $\mathrm{CF}_{3}-\mathrm{B}$ compounds with respect to analogous $\mathrm{CH}_{3}-\mathrm{B}$ species can be detected with certainty.

In general, large cations are believed to have little influence on anion geometry. In $\mathrm{K}\left[\mathrm{CF}_{3} \mathrm{BF}_{3}\right]$, only 8° deviations of the $\mathrm{F}-\mathrm{C}-\mathrm{B}-\mathrm{F}$ torsion angles from exactly staggered values were found [4]. However in $\mathrm{Cs}\left[\left(\mathrm{CF}_{3}\right)_{2} \mathrm{BF}_{2}\right]$, anioncation packing forces appear to determine the conformation of the anion. While the anion-cation interactions must be essentially electrostatic in nature, their effect on structure is clearly not negligible and difficult to predict.

Experimental

Cs $\left[\left(\mathrm{CF}_{3}\right)_{2} \mathrm{BF}_{2}\right]$ was prepared according to Ref. 2, the ${ }^{10} \mathrm{~B}$ sample being obtained from ${ }^{10} \mathrm{~B}_{2} \mathrm{O}_{3}$. Raman spectra of an aqueous solution in a 1 mm i.d. capil-
TABLE 7
COMPARISON OF FORCE CONSTANTS ${ }^{a}$ AND GEOMETRIES ${ }^{b}$

${ }^{a}$ in $10^{2} \mathrm{~N} / \mathrm{m}$. ${ }^{b}$ Distances (\AA) and angles (${ }^{\circ}$. ${ }^{c}{ }^{c}$ This worlc. ${ }^{d}$ Ref. 4, ${ }^{e}$ Ref. 16 . The experimental $10 / 11 \mathrm{~B}$ shifts of ν_{3} was determined to be 40.5 to $41.0 \mathrm{~cm}^{-1}$ for $\mathrm{BF} 4^{-}$ [17]. Owing to anharmonicity effects and Fermi resonance of ν_{3} with $2 \nu_{4}$, which is stronger for the ${ }^{11} B$ than the ${ }^{10} B$ species, the experimental shift should be co Corrections for both effects would indicate that the true shift, about $42 \mathrm{~cm}^{-1}$, is larger than observed, which is in excellent agreement with that calculated using Becher's force constant [16]. ${ }^{f}$ Ref. 18. ${ }^{8}$ Ref. 19. ${ }^{h}$ Ref. 20. ${ }^{i}$ Ref. 7. ${ }^{j}$ Ref. 21. ${ }^{k}$ Neutron results. ${ }^{\prime}$ X-ray results. ${ }^{m}$ Ref. 22. " Analogous force constants from ref. b.
lary were recorded with a Cary 82 instrument, excitation $\mathrm{Kr}^{+} 6471 \AA, 200 \mathrm{~mW}$ at the sample, spectral slit width $3 \mathrm{~cm}^{-1}$, wavenumber accuracy $\pm 1-2 \mathrm{~cm}^{-1}$. IR spectra were obtained from KBr and polyethylene dises employing a:Beckman IR 12 ($2000-200 \mathrm{~cm}^{-1}$) and a Nicolet Series 8000 FT instrument ($500-50$ cm^{-1}). Wavenumber accuracy $\pm 1-2 \mathrm{~cm}^{-1}$.

Acknowledgement

Support by the Ministerium für Wissenschaft und Forschung des Landes Nordrhein-Westfalen and Fonds der Chemie is gratefully acknowledged. We express our gratitude to Dr. C. Krüger for making X-ray facilities available to us.

References

1 A. Ruoff and H. Bürger, Spectrochim. Acta A, 36(1980) 171.
2 G. Pawelke, F. Heyder and H. Bürger, J. Organometal. Chem., 178 (1979) 1.
3 A. Yokozeki and S.H. Bauer, Top. Curr. Chem., 53 (1975) 71.
$\$$ D.J. Brauer, H. Bürger and G. Pawelke, Inorg. Chem., 16 (1977) 2305.
5 H. Bürger and G. Pawelke, Spectrochim. Acta A, 35 (1979) 525.
6 (a) J.A. Ibers and W.C. Hamilton, Ed., International Tables for X-ray Crystallography, Vol. IV, The Kynoch Press. Birmingham. 1974, Table 2.3 .1 (b) ibid., Table 2.2B.
7 W.E. Rhine, G. Stucky and S.W. Peterson. J. Amer. Chem. Soc., 97 (1975) 6d01.
8 B.W. Davies and N.C. Payne, J. Organometal. Chem., 102 (1975) 245; F.A. Cotton, T. La Cour and A.G. Stanislowski, J. Amer. Chem. Soc., 96 (1974) 754; F.A. Cotton, B.A. Fenz and A.G. Stanislowski, Inorg. Chim. Acta, 7 (1973) 503.
9 A.L. Andreassen and S.H. Bauer, J. Chem. Phys., 56 (1972) 3802.
10 A. Bondi, J. Phys. Chem., 68 (1964) 441.
11 H. Bürger, H. Niepel, G. Pawelke and H. Oberhammer, J. Mol. Struct., 54 (1979) 159.
12 M.J.R. Clark and H. Lynton, Can. J. Chem., 47 (1969) 2579.
13 P. Pulay, G. Borossay and F. Törölc, J. Mol. Struct., 2 (1968) 336; P. Pulay and W. Sawodny, J. Mol. Spectrosc.. 26 (1968) 150.
14 T. Shimanouchi in H. Eyring, D. Henderson and W. Jost, (Eds.), Physical Chemistry, An Advanced Treatise, New York, N.Y., 1970, p. 233.
15 H.J. Becher, Fortschr. Chem. Forsch., 10 (1968) 156.
16 H.J. Becher, Colloq. Intern. CNRS, Paris, 191 (1970) 187.
17 H. Bonadeo and E. Silberman, J. Mol. Spectrosc., 32 (1969) 214.
18 G. Brunton, Acta Crystallogr., B, 25 (1969) 2161.
19 J.L. Duncan. J. Mol. Spectrosc., 22 (1967) 247.
20 K. Kuchitsu and S. Konaka, J. Chem. Phys., 45 (1966) 43 ± 2.
21 H.J. Becher and F. Bramsiepe, Spectrochim. Acta, A, 35 (1979) 53.
22 L.S. Bartell and B.L. Carroll, J. Chem. Phys., 42 (1965) 3076.

[^0]: * For Part XXXIII, see Ref. 1.

[^1]: * To reduce the chances of refining to a false minimum, the $B-C$ distances were equalized and the CF_{3} geometries were optimized assuming local 3 m symmetry before anisotropic refinement was commenced.
 ** The $\mathrm{B}-\mathrm{C}\left(\mathrm{CF}_{3}\right)$ distances in the Cs and K salt are $\mathbf{0 . 0 1 - 0 . 0 2 ~} \mathrm{A}$ shorter than the mean $\mathrm{B}-\mathrm{C}\left(\mathrm{CH}_{3}\right)$ bond lengths in $\mathrm{LiB}\left(\mathrm{CH}_{3}\right)_{4}$ [7]; however, the latter bonds display variations which might be due to the two different types of $\mathrm{CH}_{3} \cdots \mathrm{Ci}$ interactions present. Thus for the linearly bridged $\mathrm{B}-\mathrm{CH}_{3} \cdots \mathrm{Li}$ fragments, the X-ray results [7] yield a B-C bond length, $1.626(8)$ A, which agrees well with the $\mathrm{B}-\mathrm{C}\left(\mathrm{CF}_{3}\right)$ distances.
 *** Corresponding distances in $\left.\mathrm{K}^{2} \mathrm{CF}_{3} \mathrm{BF}_{3}\right]$ are 2.165(5) and $0.539(4)$ A respectively.

[^2]: \dagger Correspondingly, no significant deviation from 3m symmetry is found for the bond distances and angles of $\mathbf{C (1)}$ while those of $\mathbf{C (2)}$ would show significant deviations (X^{2} tests) even if the σ 's are underestimated by a factor of two.

